The Gas-phase Raman Spectrum and Molecular Structure of Dibromodichlorotellurium(IV), TeCl₂Br₂

By G. A. OZIN* and A. VANDER VOET

(Lash Miller Chemical Laboratories and Erindale College, University of Toronto, Toronto, 5, Canada)

Summary The Raman spectrum of gaseous TeCl_2Br_2 at 310°, reported for the first time, is consistent with the presence of a unimolecular species having C_1 symmetry.

DIBROMODICHLOROTELLURIUM(IV), TeCl₂Br₂,^{1,2} represents the only known example of a Group VI mixed tetrahalide which is sufficiently stable in the vapour phase to allow a structural investigation by gas-phase laser Raman spectroscopy. By analogy with gaseous TeCl₄,³ the species present in the vapour of TeCl₂Br₂ would also be expected to be molecular although suitable electron-diffraction data which would be expected to be observed using 4880 Å laser excitation, even for vapour pressures of Br_2 , Te_2 , or $TeBr_2$ of the order of, or less than, 1 mm Hg. Our Raman data for $TeCl_2Br_2$ (Table) parallel those for $TeCl_4$ and show that the structure in the solid state differs from that in the vapour phase and in solution in C_6H_6 and MeCN, in which a molecular form is probable.³ Let us consider the Raman data for $TeCl_2Br_2$ in the gaseous and solution phases in terms of the most probable stereochemistries based (a) on a regular trigonal bipyramid with an equatorial lone pair (A, B, and C) and (b) similar to (a) but in a distorted form.

The vibrational spectrum of TeCl₂Br₂^a

Assignment	Raman ^b (gas, 310°) 370s (p) 285s (p) 242msh (p) 198m (p) ca. 150vw ca. 130m.br (p) ^c	Raman ^b I.r. ² (C ₆ H ₆ solution)		Raman ^b (MeCN solution)	I.r. ² (HCONMe ₂ solution)
vTeCl _{eq} vTeCl _{ax} vTeBr _{eq} vTeBr _{ax}		373s (p) 286m (p) 248ms (p) ca. 195m (p) ^d	279vsbr 255m 234m	e 275ms (p) 249s (p) 194ms (p) 164msbr (p)	e e 246s 195s

^a The Raman spectrum of powdered TeCl₂Br₂ showed lines at 357mwsh, 338s, 242vs, 233msh, 226mwsh, 158w, 148w, 132w, 109w, 102w, 74s, and 51s.

^b This study.

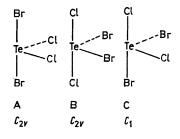
^c This band was very broad and probably consists of more than one line.

d Occurred on rising base-line.

e Region obscured by solvent.

are not available. As far as we know the only spectral results available for TeCl_2Br_2 come from an i.r. study of the solid and of a benzene and dimethylformamide solution.²

The possible gas-phase dissociations


$$TeCl_2Br_2 \Rightarrow TeCl_2 + Br_2$$
 (1)

$$TeCl_2Br_2 \Rightarrow TeBr_2 + Cl_2$$
 (2)

$$2\text{TeCl}_2 \rightleftharpoons \text{Te}_2 + 2\text{Cl}_2 \tag{3}$$

$$2\text{TeBr}_2 \rightleftharpoons \text{Te}_2 + 2\text{Br}_2 \tag{4}$$

at temperatures near and above the boiling point of TeCl_2Br_2 (415°) were found to be negligible at the temperature of our gas-phase Raman experiment (310°). This was confirmed by the non-observation of the extremely intense and depolarised resonance fluorescence spectra of diatomic bromine, diatomic tellurium, and triatomic tellurium dibromide⁴ Although structure C seems unlikely, as one might expect the molecule to adopt the higher symmetry configuration, the gas- and solution-phase Raman data of the

present study favour C for the following reasons. All of the observed Raman lines for TeCl_2Br_2 in the gaseous and solution phases were definitely polarised. Also, four

polarised Raman-active stretching modes were observed, the frequencies of which correspond very closely with those to be expected for equatorial and axial Te-Cl stretching modes (370 and 285 cm⁻¹) and equatorial and axial Te-Br stretching modes (242 and 198 cm⁻¹), respectively.

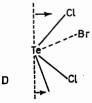
The Raman spectrum of gaseous TeCl₂Br₂ at 310°; FIGURE. (a) parallel; (b) crossed polarisation measurement.

300

In the analysis of the gas-phase data one should also

400

¹ E. A. Aynsley, J. Chem. Soc., 1953, 3016.
² N. Katsaros and J. W. George, Inorg. Chim. Acta, 1968, 3, 165.
³ A. Michaelis, Ber., 1887, 20, 1781; J. H. Simons, J. Amer. Chem. Soc., 1930, 52, 348; D. P. Stevenson and V. Schomaker, *ibid.*, 1940, 62, 1267; I. R. Beattie, J. R. Horder, and P. J. Jones, J. Chem. Soc. (A), 1970, 329.
⁴ G. A. Ozin and A. Vander Voet, unpublished work; I. R. Beattie and G. A. Ozin, unpublished work.
⁵ R. J. Gillespie, J. Amer. Chem. Soc., 1960, 82, 5978; Canad. J. Chem., 1961, 39, 318.
⁶ E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 1963, 2, 613.


α

Ь

100

200

consider the possibility that the axial bonds may be somewhat distorted from the 180° configuration as shown below:

A distortion of structure C of the kind shown in D which is tending towards a distorted square-pyramidal configuration about tellurium, would tend to reduce the lone-pair-bonding-pair interactions.⁵ Note that similar distortions of structures A and B retain the symmetry C_{2v} . To summarise, we can say that the Raman data for molecular TeCl₂Br₂ are consistent with either of the low symmetry (C_1) structures C or D and not structure B which would have been predicted.6

TeCl₂Br₂(m.p. 292°) was prepared by the method of Aynsley.¹ Gas-phase Raman spectra were recorded for TeCl₂Br₂ at 310° on a Spex model 1401 using argon ion 4880 Å laser excitation.

We thank Dr. R. J. O'Brien for helpful discussion and the National Research Council of Canada for financial support.

(Received, June 29th, 1970; Com. 1022.)

∆ cm⁻¹